CBCS SCHEME

USN												15CS753
-----	--	--	--	--	--	--	--	--	--	--	--	---------

Seventh Semester B.E. Degree Examination, Jan./Feb. 2023 Digital Image Processing

Digital Image Processing

Tin	ne: 3	3 hrs.	Max. Marks: 80							
	N	Note: Answer any FIVE full questions, choosing ONE full question from each n	nodule.							
		With a neat block diagram, explain the fundamental steps in image processing.	(08 Marks)							
1	a. L	Explain the components of an image processing system, with a help of a neat b								
	b.	Explain the components of an image processing system, with a norp of a norm	(08 Marks)							
		OR								
2		Explain the following terms:								
2	a.	(i) Neighbours (ii) Connectivity of pixels								
		(iii) Euclidean distance (iv) City block distance	(08 Marks)							
	b.	2 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	(08 Marks)							
_		Module-2	(08 Marks)							
3	a. 1-	Explain gray level transformation functions.	(00 1/141115)							
	b.	Explain the following: (i) Histogram (ii) Normalized histogram								
		(iii) Histogram equalization (iv) Histogram matching	(08 Marks)							
		OR	(00 Marks)							
4	a.	Explain the smoothing linear filter in spatial domain for digital image.	(08 Marks)							
	b.		(08 Marks)							
		enhancement.	(00 1/141113)							
		Module-3								
5	a.	Explain any four properties of two dimensional discrete Fourier transform.	(08 Marks)							
	b.	Explain image sharpening using frequency domain filters.	(08 Marks)							
		OR								
6	a.	Explain the steps involved in filtering in frequency domain.	(08 Marks)							
·	b.	to a state of complet to	inction of one							
		variable.	(08 Marks)							
	\subseteq	Module-4								
		Explain the basic steps in canny edge detection algorithm.	(08 Marks)							
1	a. h	Discuss how point detection and line detection algorithm works.	(08 Marks)							
	υ.									
		OR	(12 Marks)							
8	a.		(12 Marks) (04 Marks)							
	b.	. Write short notes on Hough transform.	(UT MAINS)							
		Module-5								
9	a.	. Explain with a neat diagram, a general compression system model.	(08 Marks)							
	b.	Define data compression. Explain the types of redundancy.	(08 Marks)							
		OR.								

(10 Marks)

(06 Marks)

Explain Huffman coding and arithmetic coding.

With a neat block diagram, explain block transform coding.

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

10